Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(2): e0197523, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38294249

RESUMO

The highly pathogenic arenavirus, Junín virus (JUNV), expresses three truncated alternative isoforms of its nucleoprotein (NP), i.e., NP53kD, NP47kD, and NP40kD. While both NP47kD and NP40kD have been previously shown to be products of caspase cleavage, here, we show that expression of the third isoform NP53kD is due to alternative in-frame translation from M80. Based on this information, we were able to generate recombinant JUNVs lacking each of these isoforms. Infection with these mutants revealed that, while all three isoforms contribute to the efficient control of caspase activation, NP40kD plays the predominant role. In contrast to full-length NP (i.e., NP65kD), which is localized to inclusion bodies, where viral RNA synthesis takes place, the loss of portions of the N-terminal coiled-coil region in these isoforms leads to a diffuse cytoplasmic distribution and a loss of function in viral RNA synthesis. Nonetheless, NP53kD, NP47kD, and NP40kD all retain robust interferon antagonistic and 3'-5' exonuclease activities. We suggest that the altered localization of these NP isoforms allows them to be more efficiently targeted by activated caspases for cleavage as decoy substrates, and to be better positioned to degrade viral double-stranded (ds)RNA species that accumulate in the cytoplasm during virus infection and/or interact with cytosolic RNA sensors, thereby limiting dsRNA-mediated innate immune responses. Taken together, this work provides insight into the mechanism by which JUNV leverages apoptosis during infection to generate biologically distinct pools of NP and contributes to our understanding of the expression and biological relevance of alternative protein isoforms during virus infection.IMPORTANCEA limited coding capacity means that RNA viruses need strategies to diversify their proteome. The nucleoprotein (NP) of the highly pathogenic arenavirus Junín virus (JUNV) produces three N-terminally truncated isoforms: two (NP47kD and NP40kD) are known to be produced by caspase cleavage, while, here, we show that NP53kD is produced by alternative translation initiation. Recombinant JUNVs lacking individual NP isoforms revealed that all three isoforms contribute to inhibiting caspase activation during infection, but cleavage to generate NP40kD makes the biggest contribution. Importantly, all three isoforms retain their ability to digest double-stranded (ds)RNA and inhibit interferon promoter activation but have a diffuse cytoplasmic distribution. Given the cytoplasmic localization of both aberrant viral dsRNAs, as well as dsRNA sensors and many other cellular components of innate immune activation pathways, we suggest that the generation of NP isoforms not only contributes to evasion of apoptosis but also robust control of the antiviral response.


Assuntos
Caspases , Citoplasma , Febre Hemorrágica Americana , Interações Hospedeiro-Patógeno , Imunidade Inata , Vírus Junin , Nucleoproteínas , Biossíntese de Proteínas , Humanos , Apoptose , Inibidores de Caspase/metabolismo , Caspases/metabolismo , Citoplasma/metabolismo , Citoplasma/virologia , Ativação Enzimática , Febre Hemorrágica Americana/imunologia , Febre Hemorrágica Americana/virologia , Interferons/genética , Interferons/imunologia , Vírus Junin/genética , Vírus Junin/metabolismo , Vírus Junin/patogenicidade , Nucleoproteínas/biossíntese , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Viral/biossíntese , RNA Viral/genética , Replicação Viral
2.
Emerg Microbes Infect ; 12(2): 2223732, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37306620

RESUMO

N6-methyladenosine (m6A) is one of the most abundant modifications of cellular RNA, where it serves various functions. m6A methylation of many viral RNA species has also been described; however, little is known about the m6A epitranscriptome of haemorrhagic fever-causing viruses like Ebola virus (EBOV). Here, we analysed the importance of the methyltransferase METTL3 for the life cycle of this virus. We found that METTL3 interacts with the EBOV nucleoprotein and the transcriptional activator VP30 to support viral RNA synthesis, and that METTL3 is recruited into EBOV inclusions bodies, where viral RNA synthesis occurs. Analysis of the m6A methylation pattern of EBOV mRNAs showed that they are methylated by METTL3. Further studies revealed that METTL3 interaction with the viral nucleoprotein, as well as its importance for RNA synthesis and protein expression, is also observed for other haemorrhagic fever viruses such as Junín virus (JUNV) and Crimean-Congo haemorrhagic fever virus (CCHFV). The negative effects on viral RNA synthesis due to loss of m6A methylation are independent of innate immune sensing, as METTL3 knockout did not affect type I interferon induction in response to viral RNA synthesis or infection. Our results suggest a novel function for m6A that is conserved among diverse haemorrhagic fever-causing viruses (i.e. EBOV, JUNV and CCHFV), making METTL3 a promising target for broadly-acting antivirals.


Assuntos
Vírus da Dengue , Ebolavirus , Vírus da Febre Hemorrágica da Crimeia-Congo , Doença pelo Vírus Ebola , Humanos , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Ebolavirus/genética , RNA Viral/genética , RNA Viral/metabolismo , Vírus da Dengue/genética , Nucleoproteínas , Metiltransferases/genética
3.
Viruses ; 14(9)2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36146824

RESUMO

Arenaviruses include important zoonotic pathogens that cause hemorrhagic fever (e.g., Junín virus; JUNV) as well as other viruses that are closely related but apathogenic (e.g., Tacaribe virus; TCRV). We have found that, while TCRV and JUNV differ in their ability to induce apoptosis in infected cells, due to active inhibition of caspase activation by the JUNV nucleoprotein, both viruses trigger similar upstream pro-apoptotic signaling events, including the activation/phosphorylation of p53. In the case of TCRV, the pro-apoptotic factor Bad is also phosphorylated (leading to its inactivation). These events clearly implicate upstream kinases in regulating the induction of apoptosis. Consistent with this, here we show activation in TCRV-infected cells of the stress-activated protein kinases p38 and JNK, which are known to regulate p53 activation, as well as the downstream kinase MK2 and transcription factor c-Jun. We also observed the early transient activation of Akt, but not Erk. Importantly, the chemical inhibition of Akt, p38, JNK and c-Jun all dramatically reduced viral growth, even though we have shown that inhibition of apoptosis itself does not. This indicates that kinase activation is crucial for viral infection, independent of its downstream role in apoptosis regulation, a finding that has the potential to shed further light on the determinants of arenavirus pathogenesis, as well as to inform future therapeutic approaches.


Assuntos
Infecções por Arenaviridae , Arenavirus do Novo Mundo , Apoptose , Arenavirus do Novo Mundo/fisiologia , Caspases , Humanos , Nucleoproteínas , Proteínas Proto-Oncogênicas c-akt , Fatores de Transcrição , Proteína Supressora de Tumor p53 , Replicação Viral , Proteínas Quinases p38 Ativadas por Mitógeno
4.
Viruses ; 14(7)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35891543

RESUMO

Replication-competent reporter-expressing viruses are crucial tools in molecular virology with applications that range from antiviral screening to live-cell imaging of protein spatiotemporal dynamics. However, there is currently little information available regarding viable strategies to develop reporter-expressing arenaviruses. To address this, we used Tacaribe virus (TCRV), an apathogenic BSL2 arenavirus, to assess the feasibility of different reporter expression approaches. We first generated trisegmented TCRV viruses with either the glycoprotein (GP) or nucleoprotein (NP) replaced by a reporter (GFP, mCherry, or nanoluciferase). These viruses were all viable, but showed marked differences in brightness and attenuation. Next, we generated terminal fusions with each of the TCRV proteins (i.e., NP, GP, polymerase (L), matrix protein (Z)) either with or without a T2A self-cleavage site. We tested both the function of the reporter-fused proteins alone, and the viability of corresponding recombinant TCRVs. We successfully rescued viruses with both direct and cleavable reporter fusions at the C-terminus of Z, as well as cleavable N-terminal fusions with NP. These viruses all displayed detectable reporter activity, but were also moderately attenuated. Finally, reporter proteins were inserted into a flexible hinge region within L. These viruses were also viable and showed moderate attenuation; however, reporter expression was only detectable for the luminescent virus. These strategies provide an exciting range of new tools for research into the molecular biology of TCRV that can likely also be adapted to other arenaviruses.


Assuntos
Arenaviridae , Arenavirus , Arenavirus do Novo Mundo , Arenaviridae/genética , Arenaviridae/metabolismo , Arenavirus/genética , Arenavirus do Novo Mundo/genética , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Replicação Viral
5.
PLoS Pathog ; 16(10): e1008948, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33045019

RESUMO

Pathogenicity often differs dramatically among even closely related arenavirus species. For instance, Junín virus (JUNV), the causative agent of Argentine hemorrhagic fever (AHF), is closely related to Tacaribe virus (TCRV), which is normally avirulent in humans. While little is known about how host cell pathways are regulated in response to arenavirus infection, or how this contributes to virulence, these two viruses have been found to differ markedly in their ability to induce apoptosis. However, details of the mechanism(s) governing the apoptotic response to arenavirus infections are unknown. Here we confirm that TCRV-induced apoptosis is mitochondria-regulated, with associated canonical hallmarks of the intrinsic apoptotic pathway, and go on to identify the pro- and anti-apoptotic Bcl-2 factors responsible for regulating this process. In particular, levels of the pro-apoptotic BH3-only proteins Noxa and Puma, as well as their canonical transcription factor p53, were strongly increased. Interestingly, TCRV infection also led to the accumulation of the inactive phosphorylated form of another pro-apoptotic BH3-only protein, Bad (i.e. as phospho-Bad). Knockout of Noxa or Puma suppressed apoptosis in response to TCRV infection, whereas silencing of Bad increased apoptosis, confirming that these factors are key regulators of apoptosis induction in response to TCRV infection. Further, we found that while the highly pathogenic JUNV does not induce caspase activation, it still activated upstream pro-apoptotic factors, consistent with current models suggesting that JUNV evades apoptosis by interfering with caspase activation through a nucleoprotein-mediated decoy function. This new mechanistic insight into the role that individual BH3-only proteins and their regulation play in controlling apoptotic fate in arenavirus-infected cells provides an important experimental framework for future studies aimed at dissecting differences in the apoptotic responses between arenaviruses, their connection to other cell signaling events and ultimately the relationship of these processes to pathogenesis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Infecções por Arenaviridae/patologia , Arenavirus do Novo Mundo/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Replicação Viral , Proteína de Morte Celular Associada a bcl/metabolismo , Proteínas Reguladoras de Apoptose/genética , Infecções por Arenaviridae/genética , Infecções por Arenaviridae/metabolismo , Infecções por Arenaviridae/virologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Domínios Proteicos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína de Morte Celular Associada a bcl/genética
6.
Arch Virol ; 165(8): 1899-1903, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32462284

RESUMO

Tacaribe virus (TCRV) is the prototype of the New World arenaviruses (also known as TCRV serocomplex viruses). While TCRV is not itself a human pathogen, many closely related members of this group cause hemorrhagic fever, and thus TCRV has long served as an important BSL2 system for research into diverse areas of arenavirus biology. Due to its widespread use, a coding-complete sequence for both the S and L segments of the bipartite genome has been publically available for almost 30 years. However, more recently, this sequence has been found to contain significant discrepancies compared to other samples of the same original strain (i.e., TRVL-11573). Further, it is incomplete with respect to the genome ends, which contain critical regulatory elements for RNA synthesis. In order to rectify these issues we now present the first complete genome sequence for this important prototype arenavirus. In addition to completing the S segment 5' end, we identified an apparent error in the L segment 3' end as well as substantial discrepancies in the S segment intergenic region likely to affect folding. Comparison of this sequence with existing partial sequences confirmed a 12-amino-acid deletion in GP, including putative glycosylation sites, and a 4-amino-acid exchange flanking the exonuclease domain of NP. Accounting for these corrections, the TRVL-11573 strain appears to be nearly identical to that isolated in Florida in 2012. The availability of this information provides a solid basis for future molecular and genetic work on this important prototype arenavirus.


Assuntos
Arenavirus do Novo Mundo/genética , Florida , Humanos , Elementos Reguladores de Transcrição/genética , Replicação Viral/genética , Sequenciamento Completo do Genoma/métodos
7.
PLoS One ; 14(7): e0219312, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31276481

RESUMO

Ebolaviruses continue to inflict horrific disease and instill fear. The 2013-2016 outbreak in Western Africa caused unfathomable morbidity and mortality (over 11,000 deaths), and the second largest outbreak is on-going in the Democratic Republic of the Congo. The first stage of an Ebolavirus infection is entry, culminating in delivery of the viral genome into the cytoplasm to initiate replication. Among enveloped viruses, Ebolaviruses use a complex entry pathway: they bind to attachment factors on cell surfaces, are engulfed by macropinocytosis, and traffic through the endosomal system. En route, the receptor binding subunit of the glycoprotein (GP) is reduced from ~130 to ~19 kDa by cathepsins. This event allows cleaved GP (GPcl) to bind to Niemann-Pick C1 (NPC1), its endosomal receptor. The virus then fuses with a late endosomal membrane, but how this occurs remains a subject of debate. An early, but standing, observation is that entry of particles bearing GPcl is inhibited by agents that raise endosomal pH or inhibit cysteine proteases, suggesting the need for an additional factor(s). Yet, some have concluded that NPC1 is sufficient to trigger the fusion activity of GPcl. Here, we re-examined this question using sensitive cell-cell and pseudovirus-cell fusion assays. We did not observe detectable GPcl-mediated fusion with NPC1 or its GPcl binding domain at any pH tested, while robust fusion was consistently observed with GP from lymphocytic choriomeningitis virus at low pH. Addition of proposed fusion-enhancing factors-cations (Ca++ and K+), a reducing agent, the anionic lipid Bis(Monoacylglycero)Phosphate, and a mixture of cathepsins B and L-did not induce detectable fusion. Our findings are in line with the earlier proposal that an additional factor is required to trigger the full fusion activity of GPcl after binding to NPC1. We discuss caveats to our study and what the missing factor(s) might be.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/virologia , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/metabolismo , Animais , Proteínas de Transporte/metabolismo , Fusão Celular , Linhagem Celular , Doença pelo Vírus Ebola/metabolismo , Humanos , Proteína C1 de Niemann-Pick , Ligação Proteica , Receptores Virais/metabolismo
9.
J Virol ; 92(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29491159

RESUMO

Hepatitis C virus (HCV) infection causes 500,000 deaths annually, in association with end-stage liver diseases. Investigations of the HCV life cycle have widened the knowledge of virology, and here we discovered that two piperazinylbenzenesulfonamides inhibit HCV entry into liver cells. The entry of HCV into host cells is a complex process that is not fully understood but is characterized by multiple spatially and temporally regulated steps involving several known host factors. Through a high-content virus infection screening analysis with a library of 1,120 biologically active chemical compounds, we identified SB258585, an antagonist of serotonin receptor 6 (5-HT6), as a new inhibitor of HCV entry in liver-derived cell lines as well as primary hepatocytes. A functional characterization suggested a role for this compound and the compound SB399885, which share similar structures, as inhibitors of a late HCV entry step, modulating the localization of the coreceptor tight junction protein claudin-1 (CLDN1) in a 5-HT6-independent manner. Both chemical compounds induced an intracellular accumulation of CLDN1, reflecting export impairment. This regulation correlated with the modulation of protein kinase A (PKA) activity. The PKA inhibitor H89 fully reproduced these phenotypes. Furthermore, PKA activation resulted in increased CLDN1 accumulation at the cell surface. Interestingly, an increase of CLDN1 recycling did not correlate with an increased interaction with CD81 or HCV entry. These findings reinforce the hypothesis of a common pathway, shared by several viruses, which involves G-protein-coupled receptor-dependent signaling in late steps of viral entry.IMPORTANCE The HCV entry process is highly complex, and important details of this structured event are poorly understood. By screening a library of biologically active chemical compounds, we identified two piperazinylbenzenesulfonamides as inhibitors of HCV entry. The mechanism of inhibition was not through the previously described activity of these inhibitors as antagonists of serotonin receptor 6 but instead through modulation of PKA activity in a 5-HT6-independent manner, as proven by the lack of 5-HT6 in the liver. We thus highlighted the involvement of the PKA pathway in modulating HCV entry at a postbinding step and in the recycling of the tight junction protein claudin-1 (CLDN1) toward the cell surface. Our work underscores once more the complexity of HCV entry steps and suggests a role for the PKA pathway as a regulator of CLDN1 recycling, with impacts on both cell biology and virology.


Assuntos
Claudina-1/metabolismo , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Receptores de Serotonina/metabolismo , Sulfonamidas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hepacivirus/fisiologia , Hepatócitos/virologia , Humanos , Isoquinolinas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Tetraspanina 28/metabolismo , Junções Íntimas/metabolismo
10.
mBio ; 9(1)2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29295909

RESUMO

Lassa virus (LASV) is an arenavirus whose entry into host cells is mediated by a glycoprotein complex (GPC) comprised of a receptor binding subunit, GP1, a fusogenic transmembrane subunit, GP2, and a stable signal peptide. After receptor-mediated internalization, arenaviruses converge in the endocytic pathway, where they are thought to undergo low-pH-triggered, GPC-mediated fusion with a late endosome membrane. A unique feature of LASV entry is a pH-dependent switch from a primary cell surface receptor (α-dystroglycan) to an endosomal receptor, lysosomal-associated membrane protein (Lamp1). Despite evidence that the interaction between LASV GP1 and Lamp1 is critical, the function of Lamp1 in promoting LASV infection remains poorly characterized. Here we used wild-type (WT) and Lamp1 knockout (KO) cells to show that Lamp1 increases the efficiency of, but is not absolutely required for, LASV entry and infection. We then used cell-cell and pseudovirus-cell surface fusion assays to demonstrate that LASV GPC-mediated fusion occurs at a significantly higher pH when Lamp1 is present compared to when Lamp1 is missing. Correspondingly, we found that LASV entry occurs through less acidic endosomes in WT (Lamp1-positive) versus Lamp1 KO cells. We propose that, by elevating the pH threshold for fusion, Lamp1 allows LASV particles to exit the endocytic pathway before they encounter an increasingly acidic and harsh proteolytic environment, which could inactivate a significant percentage of incoming viruses. In this manner Lamp1 increases the overall efficiency of LASV entry and infection.IMPORTANCE Lassa virus is the most clinically important member of the Arenaviridae, a family that includes six additional biosafety level 4 (BSL4) hemorrhagic fever viruses. The lack of specific antiviral therapies for Lassa fever drives an urgent need to identify druggable targets, and interventions that block infection at the entry stage are particularly attractive. Lassa virus is only the second virus known to employ an intracellular receptor, the first being Ebola virus. Here we show that interaction with its intracellular receptor, Lamp1, enhances and upwardly shifts the pH dependence of fusion and consistently permits Lassa virus entry into cells through less acidic endosomes. We propose that in this manner, Lamp1 increases the overall efficiency of Lassa virus infection.


Assuntos
Endossomos/virologia , Interações Hospedeiro-Patógeno , Vírus Lassa/fisiologia , Internalização do Vírus , Endossomos/química , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio
11.
J Virol ; 91(18)2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28659476

RESUMO

Hepatitis C virus (HCV) primarily infects hepatocytes, which are highly polarized cells. The relevance of cell polarity in the HCV life cycle has been addressed only in distantly related models and remains poorly understood. Although polarized epithelial cells have a rather simple morphology with a basolateral and an apical domain, hepatocytes exhibit complex polarization structures. However, it has been reported that some selected polarized HepG2 cell clones can exhibit a honeycomb pattern of distribution of the tight-junction proteins typical of columnar polarized epithelia, which can be used as a simple model to study the role of cell polarization in viral infection of hepatocytes. To obtain similar clones, HepG2 cells expressing CD81 (HepG2-CD81) were used, and clones were isolated by limiting dilutions. Two clones exhibiting a simple columnar polarization capacity when grown on a semipermeable support were isolated and characterized. To test the polarity of HCV entry and release, our polarized HepG2-CD81 clones were infected with cell culture-derived HCV. Our data indicate that HCV binds equally to both sides of the cells, but productive infection occurs mainly when the virus is added at the basolateral domain. Furthermore, we also observed that HCV virions are released from the basolateral domain of the cells. Finally, when polarized cells were treated with oleic acid and U0126, a MEK inhibitor, to promote lipoprotein secretion, a higher proportion of infectious viral particles of lower density were secreted. This cell culture system provides an excellent model to investigate the influence of cell polarization on the HCV life cycle.IMPORTANCE Hepatitis C is a major health burden, with approximately 170 million persons infected worldwide. Hepatitis C virus (HCV) primarily infects hepatocytes, which are highly polarized cells with a complex organization. The relevance of cell polarity in the HCV life cycle has been addressed in distantly related models and remains unclear. Hepatocyte organization is complex, with multiple apical and basolateral surfaces. A simple culture model of HepG2 cells expressing CD81 that are able to polarize with unique apical and basolateral domains was developed to study HCV infection. With this model, we demonstrated that HCV enters and exits hepatocytes by the basolateral domain. Furthermore, lower-density viral particles were produced under conditions that promote lipoprotein secretion. This cell culture system provides a useful model to study the influence of cell polarization on HCV infection.

12.
J Virol ; 90(19): 8422-34, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27412600

RESUMO

UNLABELLED: Aminoquinolines and piperazines, linked or not, have been used successfully to treat malaria, and some molecules of this family also exhibit antiviral properties. Here we tested several derivatives of 4-aminoquinolines and piperazines for their activity against hepatitis C virus (HCV). We screened 11 molecules from three different families of compounds, and we identified anti-HCV activity in cell culture for six of them. Of these, we selected a compound (B5) that is currently ending clinical phase I evaluation for neurodegenerative diseases. In hepatoma cells, B5 inhibited HCV infection in a pangenotypic and dose-dependent manner, and its antiviral activity was confirmed in primary hepatocytes. B5 also inhibited infection by pseudoparticles expressing HCV envelope glycoproteins E1 and E2, and we demonstrated that it affects a postattachment stage of the entry step. Virus with resistance to B5 was selected by sequential passage in the presence of the drug, and reverse genetics experiments indicated that resistance was conferred mainly by a single mutation in the putative fusion peptide of E1 envelope glycoprotein (F291I). Furthermore, analyses of the effects of other closely related compounds on the B5-resistant mutant suggest that B5 shares a mode of action with other 4-aminoquinoline-based molecules. Finally, mice with humanized liver that were treated with B5 showed a delay in the kinetics of the viral infection. In conclusion, B5 is a novel interesting anti-HCV molecule that could be used to decipher the early steps of the HCV life cycle. IMPORTANCE: In the last 4 years, HCV therapy has been profoundly improved with the approval of direct-acting antivirals in clinical practice. Nevertheless, the high costs of these drugs limit access to therapy in most countries. The present study reports the identification and characterization of a compound (B5) that inhibits HCV propagation in cell culture and is currently ending clinical phase I evaluation for neurodegenerative diseases. This molecule inhibits the HCV life cycle by blocking virus entry. Interestingly, after selection of drug-resistant virus, a resistance mutation in the putative fusion peptide of E1 envelope glycoprotein was identified, indicating that B5 could be used to further investigate the fusion mechanism. Furthermore, mice with humanized liver treated with B5 showed a delay in the kinetics of the viral infection. In conclusion, B5 is a novel interesting anti-HCV molecule that could be used to decipher the early steps of the HCV life cycle.


Assuntos
Aminoquinolinas/farmacologia , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Aminoquinolinas/química , Aminoquinolinas/isolamento & purificação , Animais , Antivirais/química , Antivirais/isolamento & purificação , Células Cultivadas , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Viral , Hepatite C/tratamento farmacológico , Hepatócitos/virologia , Humanos , Camundongos , Camundongos SCID , Modelos Moleculares , Estrutura Molecular , Mutação de Sentido Incorreto , Genética Reversa , Resultado do Tratamento , Proteínas do Envelope Viral/genética , Internalização do Vírus/efeitos dos fármacos
13.
Arch Virol ; 161(7): 2013-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27138549

RESUMO

An isolate of cucumber mosaic virus (CMV), designated CMV-Rom, was isolated from rosemary (Rosmarinus officinalis) plants in several locations near Avignon, France. Laboratory studies showed that, unlike typical CMV isolates, CMV-Rom has a particularly narrow host range. It could be transmitted by aphids Aphis gossypii and Myzus persicae, but with low efficacy compared to a typical CMV isolate. Phylogenetic analysis of the nucleotide sequences of the CMV-Rom genomic RNAs shows that this isolate does not belong to any of the previously described CMV subgroups, IA, IB, II or III.


Assuntos
Cucumovirus/isolamento & purificação , Doenças das Plantas/virologia , Rosmarinus/virologia , Animais , Afídeos/virologia , Cucumovirus/classificação , Cucumovirus/genética , Cucumovirus/fisiologia , Genoma Viral , Especificidade de Hospedeiro , Insetos Vetores/virologia , Filogenia
14.
Cell Microbiol ; 18(8): 1121-33, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26814617

RESUMO

GBF1 is a host factor required for hepatitis C virus (HCV) replication. GBF1 functions as a guanine nucleotide exchange factor for G-proteins of the Arf family, which regulate membrane dynamics in the early secretory pathway and the metabolism of cytoplasmic lipid droplets. Here we established that the Arf-guanine nucleotide exchange factor activity of GBF1 is critical for its function in HCV replication, indicating that it promotes viral replication by activating one or more Arf family members. Arf involvement was confirmed with the use of two dominant negative Arf1 mutants. However, siRNA-mediated depletion of Arf1, Arf3 (class I Arfs), Arf4 or Arf5 (class II Arfs), which potentially interact with GBF1, did not significantly inhibit HCV infection. In contrast, the simultaneous depletion of both Arf4 and Arf5, but not of any other Arf pair, imposed a significant inhibition of HCV infection. Interestingly, the simultaneous depletion of both Arf4 and Arf5 had no impact on the activity of the secretory pathway and induced a compaction of the Golgi and an accumulation of lipid droplets. A similar phenotype of lipid droplet accumulation was also observed when GBF1 was inhibited by brefeldin A. In contrast, the simultaneous depletion of both Arf1 and Arf4 resulted in secretion inhibition and Golgi scattering, two actions reminiscent of GBF1 inhibition. We conclude that GBF1 could regulate different metabolic pathways through the activation of different pairs of Arf proteins.


Assuntos
Fator 1 de Ribosilação do ADP/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Hepacivirus/fisiologia , Hepatite C/virologia , Replicação Viral , Linhagem Celular Tumoral , Hepatite C/enzimologia , Interações Hospedeiro-Patógeno , Humanos , Gotículas Lipídicas , Domínios Proteicos , Transporte Proteico , Via Secretória
15.
PLoS One ; 10(11): e0142539, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26561856

RESUMO

The clinical course of Hepatitis C Virus (HCV) infection is highly variable between infected individual hosts: up to 80% of acutely HCV infected patients develop a chronic infection while 20% clear infection spontaneously. Spontaneous clearance of HCV infection can be predicted by several factors, including symptomatic acute infection, favorable IFNL3 polymorphisms and gender. In our study, we explored the possibility that variants in HCV cell entry factors might be involved in resistance to HCV infection. In a same case patient highly exposed but not infected by HCV, we previously identified one mutation in claudin-6 (CLDN6) and a rare variant in occludin (OCLN), two tight junction proteins involved in HCV entry into hepatocytes. Here, we conducted an extensive functional study to characterize the ability of these two natural variants to prevent HCV entry. We used lentiviral vectors to express Wildtype or mutated CLDN6 and OCLN in different cell lines and primary human hepatocytes. HCV infection was then investigated using cell culture produced HCV particles (HCVcc) as well as HCV pseudoparticles (HCVpp) expressing envelope proteins from different genotypes. Our results show that variants of CLDN6 and OCLN expressed separately or in combination did not affect HCV infection nor cell-to-cell transmission. Hence, our study highlights the complexity of HCV resistance mechanisms supporting the fact that this process probably not primarily involves HCV entry factors and that other unknown host factors may be implicated.


Assuntos
Claudinas/imunologia , Hepacivirus/imunologia , Hepatite C/imunologia , Ocludina/imunologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Células Cultivadas , Claudinas/genética , Claudinas/metabolismo , Resistência à Doença/genética , Resistência à Doença/imunologia , Citometria de Fluxo , Células HEK293 , Células Hep G2 , Hepacivirus/fisiologia , Hepatite C/metabolismo , Hepatite C/virologia , Hepatócitos/imunologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia , Microscopia de Fluorescência , Mutação/imunologia , Ocludina/genética , Ocludina/metabolismo , Vírion/imunologia , Vírion/fisiologia
16.
Trends Microbiol ; 23(10): 590-593, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26319372

RESUMO

The tetraspanin CD81 dynamics and interactions with other proteins are essential for hepatitis C virus (HCV) entry. Recently, Gerold and collaborators used a proteomic approach and found the serum response factor binding protein 1 (SRFBP1) to be involved in a post-fusion entry process by interacting with CD81 upon HCV infection.


Assuntos
Hepacivirus/fisiologia , Proteômica , Fatores de Transcrição/metabolismo , Internalização do Vírus , Humanos
17.
J Virol ; 89(16): 8346-64, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041282

RESUMO

UNLABELLED: In our study, we characterized the effect of monensin, an ionophore that is known to raise the intracellular pH, on the hepatitis C virus (HCV) life cycle. We showed that monensin inhibits HCV entry in a pangenotypic and dose-dependent manner. Monensin induces an alkalization of intracellular organelles, leading to an inhibition of the fusion step between viral and cellular membranes. Interestingly, we demonstrated that HCV cell-to-cell transmission is dependent on the vesicular pH. Using the selective pressure of monensin, we selected a monensin-resistant virus which has evolved to use a new entry route that is partially pH and clathrin independent. Characterization of this mutant led to the identification of two mutations in envelope proteins, the Y297H mutation in E1 and the I399T mutation in hypervariable region 1 (HVR1) of E2, which confer resistance to monensin and thus allow HCV to use a pH-independent entry route. Interestingly, the I399T mutation introduces an N-glycosylation site within HVR1 and increases the density of virions and their sensitivity to neutralization with anti-apolipoprotein E (anti-ApoE) antibodies, suggesting that this mutation likely induces conformational changes in HVR1 that in turn modulate the association with ApoE. Strikingly, the I399T mutation dramatically reduces HCV cell-to-cell spread. In summary, we identified a mutation in HVR1 that overcomes the vesicular pH dependence, modifies the biophysical properties of particles, and drastically reduces cell-to-cell transmission, indicating that the regulation by HVR1 of particle association with ApoE might control the pH dependence of cell-free and cell-to-cell transmission. Thus, HVR1 and ApoE are critical regulators of HCV propagation. IMPORTANCE: Although several cell surface proteins have been identified as entry factors for hepatitis C virus (HCV), the precise mechanisms regulating its transmission to hepatic cells are still unclear. In our study, we used monensin A, an ionophore that is known to raise the intracellular pH, and demonstrated that cell-free and cell-to-cell transmission pathways are both pH-dependent processes. We generated monensin-resistant viruses that displayed different entry routes and biophysical properties. Thanks to these mutants, we highlighted the importance of hypervariable region 1 (HVR1) of the E2 envelope protein for the association of particles with apolipoprotein E, which in turn might control the pH dependency of cell-free and cell-to-cell transmission.


Assuntos
Hepacivirus/fisiologia , Ionóforos/farmacologia , Monensin/farmacologia , Proteínas do Envelope Viral/genética , Proteínas Virais/genética , Internalização do Vírus/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Farmacorresistência Viral/genética , Técnica Indireta de Fluorescência para Anticorpo , Hepacivirus/genética , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Mutação de Sentido Incorreto/genética , Testes de Neutralização , Proteínas Virais/metabolismo
18.
Nanoscale ; 7(4): 1392-402, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25502878

RESUMO

The search for viral entry inhibitors that selectively target viral envelope glycoproteins has attracted increasing interest in recent years. Amongst the handful of molecules reported to show activity as hepatitis C virus (HCV) entry inhibitors are a variety of glycan-binding proteins including the lectins, cyanovirin-N (CV-N) and griffithsin. We recently demonstrated that boronic acid-modified nanoparticles are able to reduce HCV entry through a similar mechanism to that of lectins. A major obstacle to any further development of these nanostructures as viral entry inhibitors is their only moderate maximal inhibition potential. In the present study, we report that lipid nanocapsules (LNCs), surface-functionalized with amphiphilic boronic acid (BA) through their post-insertion into the semi-rigid shell of the LNCs, are indeed far superior as HCV entry inhibitors when compared with previously reported nanostructures. These 2(nd) generation particles (BA-LNCs) are shown to prevent HCV infection in the micromolar range (IC50 = 5.4 µM of BA moieties), whereas the corresponding BA monomers show no significant effects even at the highest analyzed concentration (20 µM). The new BA-LNCs are the most promising boronolectin-based HCV entry inhibitors reported to date and are thus observed to show great promise in the development of a pseudolectin-based therapeutic agent.


Assuntos
Ácidos Borônicos/química , Hepacivirus/fisiologia , Nanocápsulas/química , Anticorpos/imunologia , Carbocianinas/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Microscopia de Fluorescência , Nanocápsulas/toxicidade , Tamanho da Partícula , Polietilenoglicóis/química , Triglicerídeos/química , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus/efeitos dos fármacos
19.
Viruses ; 6(2): 535-72, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24509809

RESUMO

Hepatitis C Virus (HCV) infection is a global public health problem affecting over 160 million individuals worldwide. Its symptoms include chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. HCV is an enveloped RNA virus mainly targeting liver cells and for which the initiation of infection occurs through a complex multistep process involving a series of specific cellular entry factors. This process is likely mediated through the formation of a tightly orchestrated complex of HCV entry factors at the plasma membrane. Among HCV entry factors, the tetraspanin CD81 is one of the best characterized and it is undoubtedly a key player in the HCV lifecycle. In this review, we detail the current knowledge on the involvement of CD81 in the HCV lifecycle, as well as in the immune response to HCV infection.


Assuntos
Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno , Receptores Virais/metabolismo , Tetraspanina 28/metabolismo , Internalização do Vírus , Humanos , Modelos Biológicos
20.
PLoS One ; 8(9): e74491, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058576

RESUMO

Recent reports indicate that the replication of hepatitis C virus (HCV) depends on the GBF1-Arf1-COP-I pathway. We generated Huh-7-derived cell lines resistant to brefeldin A (BFA), which is an inhibitor of this pathway. The resistant cell lines could be sorted into two phenotypes regarding BFA-induced toxicity, inhibition of albumin secretion, and inhibition of HCV infection. Two cell lines were more than 100 times more resistant to BFA than the parental Huh-7 cells in these 3 assays. This resistant phenotype was correlated with the presence of a point mutation in the Sec7 domain of GBF1, which is known to impair the binding of BFA. Surprisingly, the morphology of the cis-Golgi of these cells remained sensitive to BFA at concentrations of the drug that allowed albumin secretion, indicating a dichotomy between the phenotypes of secretion and Golgi morphology. Cells of the second group were about 10 times more resistant than parental Huh-7 cells to the BFA-induced toxicity. The EC50 for albumin secretion was only 1.5-1.8 fold higher in these cells than in Huh-7 cells. However their level of secretion in the presence of inhibitory doses of BFA was 5 to 15 times higher. Despite this partially effective secretory pathway in the presence of BFA, the HCV infection was almost as sensitive to BFA as in Huh-7 cells. This suggests that the function of GBF1 in HCV replication does not simply reflect its role of regulator of the secretory pathway of the host cell. Thus, our results confirm the involvement of GBF1 in HCV replication, and suggest that GBF1 might fulfill another function, in addition to the regulation of the secretory pathway, during HCV replication.


Assuntos
Brefeldina A/farmacologia , Carcinoma Hepatocelular/virologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Complexo de Golgi/metabolismo , Hepacivirus/fisiologia , Neoplasias Hepáticas/virologia , Replicação Viral/efeitos dos fármacos , Fator 1 de Ribosilação do ADP/metabolismo , Animais , Apolipoproteínas E/metabolismo , Sequência de Bases , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Compartimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Separação Celular , Sobrevivência Celular/efeitos dos fármacos , Cães , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Complexo de Golgi/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hepatite C/patologia , Hepatite C/virologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Dados de Sequência Molecular , Mutação/genética , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...